Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Journal of Korean Medical Science ; : 90-2020.
Article in English | WPRIM | ID: wpr-816655

ABSTRACT

BACKGROUND: Virtual environments have brought the use of realistic training closer to many different fields of education. In medical education, several visualization methods for studying inside the human body have been introduced as a way to verify the structure of internal organs. However, these methods are insufficient for realistic training simulators because they do not provide photorealistic scenes or offer an intuitive perception to the user. In addition, they are used in limited environments within a classroom setting.METHODS: We have developed a virtual dissection exploration system that provides realistic three-dimensional images and a virtual endoscopic experience. This system enables the user to manipulate a virtual camera through a human organ, using gesture-sensing technology. We can make a virtual dissection image of the human body using a virtual dissection simulator and then navigate inside an organ using a virtual endoscope. To improve the navigation performance during virtual endoscopy, our system warns the user about any potential collisions that may occur against the organ's wall by taking the virtual control sphere at the virtual camera position into consideration.RESULTS: Experimental results show that our system efficiently provides high-quality anatomical visualization. We can simulate anatomic training using virtual dissection and endoscopic images.CONCLUSION: Our training simulator would be helpful in training medical students because it provides an immersive environment.

2.
Journal of Korean Medical Science ; : e90-2020.
Article in English | WPRIM | ID: wpr-899818

ABSTRACT

BACKGROUND@#Virtual environments have brought the use of realistic training closer to many different fields of education. In medical education, several visualization methods for studying inside the human body have been introduced as a way to verify the structure of internal organs. However, these methods are insufficient for realistic training simulators because they do not provide photorealistic scenes or offer an intuitive perception to the user. In addition, they are used in limited environments within a classroom setting.@*METHODS@#We have developed a virtual dissection exploration system that provides realistic three-dimensional images and a virtual endoscopic experience. This system enables the user to manipulate a virtual camera through a human organ, using gesture-sensing technology. We can make a virtual dissection image of the human body using a virtual dissection simulator and then navigate inside an organ using a virtual endoscope. To improve the navigation performance during virtual endoscopy, our system warns the user about any potential collisions that may occur against the organ's wall by taking the virtual control sphere at the virtual camera position into consideration.@*RESULTS@#Experimental results show that our system efficiently provides high-quality anatomical visualization. We can simulate anatomic training using virtual dissection and endoscopic images.@*CONCLUSION@#Our training simulator would be helpful in training medical students because it provides an immersive environment.

3.
Journal of Korean Medical Science ; : e90-2020.
Article in English | WPRIM | ID: wpr-892114

ABSTRACT

BACKGROUND@#Virtual environments have brought the use of realistic training closer to many different fields of education. In medical education, several visualization methods for studying inside the human body have been introduced as a way to verify the structure of internal organs. However, these methods are insufficient for realistic training simulators because they do not provide photorealistic scenes or offer an intuitive perception to the user. In addition, they are used in limited environments within a classroom setting.@*METHODS@#We have developed a virtual dissection exploration system that provides realistic three-dimensional images and a virtual endoscopic experience. This system enables the user to manipulate a virtual camera through a human organ, using gesture-sensing technology. We can make a virtual dissection image of the human body using a virtual dissection simulator and then navigate inside an organ using a virtual endoscope. To improve the navigation performance during virtual endoscopy, our system warns the user about any potential collisions that may occur against the organ's wall by taking the virtual control sphere at the virtual camera position into consideration.@*RESULTS@#Experimental results show that our system efficiently provides high-quality anatomical visualization. We can simulate anatomic training using virtual dissection and endoscopic images.@*CONCLUSION@#Our training simulator would be helpful in training medical students because it provides an immersive environment.

4.
Journal of Korean Medical Science ; : e15-2019.
Article in English | WPRIM | ID: wpr-719571

ABSTRACT

BACKGROUND: The curved sectional planes of the human body can provide a new approach of surface anatomy that the classical horizontal, coronal, and sagittal planes cannot do. The purpose of this study was to verify whether the curved sectional planes contribute to the morphological comprehension of anatomical structures. METHODS: By stacking the sectioned images of a male cadaver, a volume model of the right half body was produced (voxel size 1 mm). The sectioned images with the segmentation data were also used to build another volume model. The volume models were peeled and rotated to be screen captured. The captured images were loaded on user-friendly browsing software that had been made in the laboratory. RESULTS: The browsing software was downloadable from the authors' homepage (anatomy.co.kr). On the software, the volume model was peeled at 1 mm thicknesses and rotated at 30 degrees. Since the volume models were made from the cadaveric images, actual colors of the structures were displayed in high resolution. Thanks to the segmentation data, the structures on the volume model could be automatically annotated. Using the software, the sternocleidomastoid muscle and the internal jugular vein in the neck region, the cubital fossa in the upper limb region, and the femoral triangle in the lower limb region were observed to be described. CONCLUSION: For the students learning various medical procedures, the software presents the needed graphic information of the human body. The curved sectional planes are expected to be a tool for disciplinary convergence of the sectional anatomy and surface anatomy.


Subject(s)
Humans , Male , Anatomy, Cross-Sectional , Cadaver , Comprehension , Education , Human Body , Imaging, Three-Dimensional , Jugular Veins , Learning , Lower Extremity , Neck , Upper Extremity , Visible Human Projects
5.
Journal of Korean Medical Science ; : e64-2018.
Article in English | WPRIM | ID: wpr-764907

ABSTRACT

BACKGROUND: The hand anatomy, including the complicated hand muscles, can be grasped by using computer-assisted learning tools with high quality two-dimensional images and three-dimensional models. The purpose of this study was to present up-to-date software tools that promote learning of stereoscopic morphology of the hand. METHODS: On the basis of horizontal sectioned images and outlined images of a male cadaver, vertical planes, volume models, and surface models were elaborated. Software to browse pairs of the sectioned and outlined images in orthogonal planes and software to peel and rotate the volume models, as well as a portable document format (PDF) file to select and rotate the surface models, were produced. RESULTS: All of the software tools were downloadable free of charge and usable off-line. The three types of tools for viewing multiple aspects of the hand could be adequately employed according to individual needs. CONCLUSION: These new tools involving the realistic images of a cadaver and the diverse functions are expected to improve comprehensive knowledge of the hand shape.


Subject(s)
Humans , Male , Anatomy, Regional , Cadaver , Computer-Assisted Instruction , Hand Strength , Hand , Learning , Muscles , Visible Human Projects
6.
Journal of Korean Medical Science ; : 1195-1201, 2017.
Article in English | WPRIM | ID: wpr-176873

ABSTRACT

The thousands of serial images used for medical pedagogy cannot be included in a printed book; they also cannot be efficiently handled by ordinary image viewer software. The purpose of this study was to provide browsing software to grasp serial medical images efficiently. The primary function of the newly programmed software was to select images using 3 types of interfaces: buttons or a horizontal scroll bar, a vertical scroll bar, and a checkbox. The secondary function was to show the names of the structures that had been outlined on the images. To confirm the functions of the software, 3 different types of image data of cadavers (sectioned and outlined images, volume models of the stomach, and photos of the dissected knees) were inputted. The browsing software was downloadable for free from the homepage (anatomy.co.kr) and available off-line. The data sets provided could be replaced by any developers for their educational achievements. We anticipate that the software will contribute to medical education by allowing users to browse a variety of images.


Subject(s)
Body Image , Cadaver , Dataset , Education, Medical , Educational Status , Hand Strength , Learning , Stomach , Teaching , Visible Human Projects
7.
Journal of Korean Medical Science ; : 1514-1515, 2016.
Article in English | WPRIM | ID: wpr-199936

ABSTRACT

No abstract available.


Subject(s)
Kidney
8.
Journal of Korean Medical Science ; : 658-661, 2015.
Article in English | WPRIM | ID: wpr-100417

ABSTRACT

We intended to determine that virtual endoscopy and laparoscopy of the stomach based on serially sectioned cadaver images is beneficial. Therefore, the outlines between the gastric wall and lumen were traced using the new female data of the Visible Korean to build a volume model. While the outlines were expanded at appropriate thicknesses, the stomach was observed endoscopically and laparoscopically in comparison with a chosen sectioned image. Four layers (mucosa, submucosa, muscular layer, and serosa) of the stomach were discernible by their proper colors in the sectioned images. All layers except the submucosa were identified in the endoscopic and laparoscopic views by using consistent colors. The stepwise expansion of the outlines revealed thickness of each layer as well as whether the thickness was uniform. Our ideas and the Visible Korean images could be a robust resource of virtual reality learning for medical students and clinicians.


Subject(s)
Adult , Female , Humans , Cadaver , Gastroscopy , Imaging, Three-Dimensional , Laparoscopy , Models, Anatomic , Stomach/pathology
9.
Anatomy & Cell Biology ; : 151-159, 2011.
Article in English | WPRIM | ID: wpr-159925

ABSTRACT

Unlike volume models, surface models, which are empty three-dimensional images, have a small file size, so they can be displayed, rotated, and modified in real time. Thus, surface models of male urogenital organs can be effectively applied to an interactive computer simulation and contribute to the clinical practice of urologists. To create high-quality surface models, the urogenital organs and other neighboring structures were outlined in 464 sectioned images of the Visible Korean male using Adobe Photoshop; the outlines were interpolated on Discreet Combustion; then an almost automatic volume reconstruction followed by surface reconstruction was performed on 3D-DOCTOR. The surface models were refined and assembled in their proper positions on Maya, and a surface model was coated with actual surface texture acquired from the volume model of the structure on specially programmed software. In total, 95 surface models were prepared, particularly complete models of the urinary and genital tracts. These surface models will be distributed to encourage other investigators to develop various kinds of medical training simulations. Increasingly automated surface reconstruction technology using commercial software will enable other researchers to produce their own surface models more effectively.


Subject(s)
Humans , Male , Computer Simulation , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Research Personnel , Urogenital System , Visible Human Projects
10.
Korean Journal of Physical Anthropology ; : 187-198, 2010.
Article in English | WPRIM | ID: wpr-37920

ABSTRACT

The sectioned images (SIs) of the pelvis from a female cadaver are the best source of realistic three-dimensional (3D) models of the female urogenital system. The purpose of this research is to present SIs and outlined images of the female pelvis with improved quality, which may be used to produce 3D models to simulate virtual dissection or surgery of the female urogenital and adjacent structures. A pelvis of Korean female cadaver which preserved buttock curve was scanned with 3T MR and CT machines. The pelvis was embedded and milled at 0.1 mm intervals. All sectioned surfaces were photographed to create horizontal SIs. On the Photoshop, 73 structures were outlined in the SIs to create outlined images. Once the structures were outlined, volume and surface models of the structures could be produced. A total of 222 MRIs and 222 CTs of a female pelvis were obtained. 2,220 SIs of the pelvis were obtained (0.1x0.1x0.1mm3-sized voxels; 48 bits color). 222 outlined images of 73 structures were prepared at 1mm intervals. Once the structures were outlined, 3D volume and surface models of the structures were produced without the help of the computer programmers using MRIcro and Maya software. We have produced high quality SIs of the female pelvis accompanied by corresponding MRI and CT images. 3D volume and surface models of the female pelvic structures have been constructed. These computerized models may serve as the basis for future realistic medical simulation programs that may enhance clinical understanding of pelvic anatomy.


Subject(s)
Female , Humans , Anatomy, Cross-Sectional , Buttocks , Cadaver , Computer Simulation , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Pelvis , Tomography, X-Ray Computed , Urogenital System
11.
Journal of Korean Society of Medical Informatics ; : 209-216, 2009.
Article in Korean | WPRIM | ID: wpr-198293

ABSTRACT

OBJECTIVE: Cadaver's sectioned images with high resolution and real color could be used as the source of realistic three-dimensional images. If the sectioned images are registered to a patient's MRIs, three-dimensional images with high resolution and real color that fit the patient, can be produced; the three-dimensional images enable realistic virtual surgery for the patient. The objective of this study was to verify the registration of a cadaver's sectioned images to a patient's head MRIs. METHODS: The sectioned images of the heads of cadaver were associated with segmented images selected at 3 mm intervals. The patient had his head MR scanned at 3 mm intervals; the MRIs were segmented. Software to register the cadaver's sectioned images to the patient's MRIs was developed. On this software, the corresponding dots were identified on both the sectioned images and the MRIs either manually or automatically using segmented images. RESULTS: The registered sectioned images corresponded to the patient's MRIs. Both manual and automatic registrations were satisfied. CONCLUSION: Further study is needed for registering sectioned images to actual patients.


Subject(s)
Humans , Cadaver , Head , Imaging, Three-Dimensional
12.
Journal of Korean Society of Medical Informatics ; : 471-483, 2008.
Article in Korean | WPRIM | ID: wpr-34151

ABSTRACT

OBJECTIVE: Unfolding is a rendering method to visualize organs at a glance by virtually incising them. Although conventional methods exploit gray-scale volume datasets such as CT or MR images, we use the Visible Korean Human dataset preserving actual color. This can be helpful for the study of anatomical knowledge. Segmented images of Visible Korean Human dataset store the boundary of organs. Since medical experts manually perform the segmentation from anatomical color images, it is very time-consuming. In general, therefore, some images selectively sampled with interval from entire color images are segmented. When we generate a segment volume dataset with the selected images, final results are deteriorated due to lack of segmentation information for missed images. In this paper, we solve this problem by generating intermediate images without performing a manual segmentation. METHODS: Firstly, after comparing differences of organ's contours in between two consecutive segmented images, we represent the differences as a user-defined value in the intermediate images. This procedure is repeated for all pairs of manually segmented images to reconstruct entire volume data consist of manually segmented images and their intermediate images. In rendering stage, we perform the radial volume ray casting along with the central path of target organ. If a ray reaches to a region having the user-defined values, we advance over the region without compositions to the boundary of that region. Then the color composition is begun by performing backtracking, since the advanced region is regarded to the thickness of it. RESULTS: As a result, we can produce high quality unfolding images for the stomach, colon, bronchus, and artery of the Visible Korea Human dataset. CONCLUSION: Since our approach can be applied to virtual dissection including actual human colors, it is helpful for the endoscopy and anatomy studies.


Subject(s)
Humans , Arteries , Bronchi , Colon , Endoscopy , Korea , Stomach
13.
Journal of Korean Society of Medical Informatics ; : 385-392, 2007.
Article in Korean | WPRIM | ID: wpr-227815

ABSTRACT

OBJECTIVE: After drawing and stacking contour of structures, which are identifed in the serially sectioned images, three-dimensional (3D) images can be made by surface reconstruction. The 3D images can be selected and rotated in a real time. The purpose of this research is to compose software of automatic surface reconstruction for making 3D images. METHODS: Contours of 55 structures in the 613 magnetic resonance images of whole body were drawn to make segmented images. We composed automatic software for stacking contours of a structure, for converting the contours into polygons, and for connecting vertices of the neighboring polygons to fill gaps between polygons with triangular surfaces. The surface reconstruction software was excuted to make 3D images of 55 structures. RESULTS: Virtual dissection software, on which 3D images could be selected and rotated, was composed. CONCLUSION: For other research, this like program can be composed for automatic surface reconstruction; several kinds of commercial software can be used for manual or automatic surface reconstruction. Investigators might choose one of the methods in consideration of their only circumstances.


Subject(s)
Humans , Imaging, Three-Dimensional , Research Personnel
14.
Korean Journal of Anatomy ; : 35-45, 2006.
Article in Korean | WPRIM | ID: wpr-651970

ABSTRACT

Sectional anatomy is the course to learn anatomical structures on the sectional planes of cadaver. The purpose of this research is to make browsing software of the serially sectioned images, which is useful not only to learn sectional anatomy but also to learn magnetic resonance (MR) images and computed tomography (CT) images. One-thousand seven-hundred two sets of corresponding anatomical, MR, CT, and segmented images (intervals 1 mm) were selected from the serially sectioned images (horizontal direction) of a Korean male cadaver's whole body. We composed browsing software (file size 377 MBytes) of the images, which involved the following functions: The anatomical, MR, CT, and segmented images, which were always corresponding, were displayed; one of four images could be enlarged; images of interesting levels could be displayed in a real time conveniently either using software buttons, scroll bar, image number or using computer keyboard; names of the 13 anatomical structures, which were already segmented, could be displayed. By using this software, medical students and doctors can figure out stereoscopic anatomical structures from the anatomical images to review anatomy; they can compare MR and CT images with corresponding anatomical images to easily recognize anatomical structures in the MR and CT images.


Subject(s)
Humans , Male , Anatomy, Cross-Sectional , Cadaver , Learning , Students, Medical
15.
Korean Journal of Anatomy ; : 175-190, 2004.
Article in Korean | WPRIM | ID: wpr-646919

ABSTRACT

To be helpful in medical education, anatomical images were made by serial sectioning of the Korean cadaver's whole body at 0.2 mm intervals. Successively, segmented images were made by outline drawing of thirteen anatomical structures on the anatomical images. First purpose of this research is to verify that anatomical and segmented images are correct by means of the virtual dissection of 3D (three dimensional) images, which are made of the anatomical and segmented images. Second purpose is to verify that the virtual dissection is helpful in studying anatomy. A 3D anatomical image and a 3D segmented image were made by stacking the anatomical and segmented images and subsequently by volume reconstructing after both intervals and pixel size of the anatomical and segmented images were reduced to be 1 mm. Virtual dissection software, on which the 3D anatomical and 3D segmented images could be sectioned at free angles, and the 3D anatomical images of the several anatomical structures could be selected to display referring to the 3D segmented image and could be rotated at the free angles, was made. As the result of this research, corresponding 3D anatomical and 3D segmented images (resolution 494x282x1,702) were prepared; and virtual dissection software, which could be conveniently operated on the personal computer, was prepared. On the virtual dissection software, stereoscopic shape and location of the anatomical structures were corresponding to anatomical knowledge, so that the anatomical and segmented images were verified to be correct. The virtual dissection software was verified to be helpful in studying stereoscopic shape and location of the anatomical structures. If the anatomical images, segmented images, 3D images, and virtual dissection software made in this research are distributed worldwide, they will help not only medical students and doctors study anatomy but also other researchers make better segmented images, 3D images, and virtual dissection software.


Subject(s)
Humans , Education, Medical , Microcomputers , Students, Medical
SELECTION OF CITATIONS
SEARCH DETAIL